Test # 378
Enter eMail-id:

1.

Word of the Day

• Fastest Things Known To Man
• Unique Book Shelving And Storage Solutions
• Krishna Janmashtami
• Precautions while using Internet Banking
• Things Psychology Tells You About Yourself
• Dating Tips For Men

The Pitch of a Note

Sound:
By means of an apparatus called the siren, it is possible to calculate the number of vibrations producing any given musical note, such, for example, as middle C on the piano. If air is forced continuously against the disk as it rotates, a series of puffs will be heard .

If the disk turns fast enough, the puffs blend into a musical sound, whose pitch rises higher and higher as the disk moves faster and faster, and produces more and more puffs each second.

The instrument is so constructed that clockwork at the top registers the number of revolutions made by the disk in one second. The number of holes in the disk multiplied by the number of revolutions a second gives the number of puffs of air produced in one second. If we wish to find the number of vibrations which correspond to middle C on the piano, we increase the speed of the disk until the note given forth by the siren agrees with middle C as sounded on the piano, as nearly as the ear can judge; we then calculate the number of puffs of air which took place each second at that particular speed of the disk. In this way we find that middle C is due to about 256 vibrations per second; that is, a piano string must vibrate 256 times per second in order for the resultant note to be of pitch middle C. The pitch of pianos, from the lowest bass note to the very highest treble, varies from 27 to about 3500 vibrations per second. No human voice, however, has so great a range of tone; the highest soprano notes of women correspond to but 1000 vibrations a second, and the deepest bass of men falls but to 80 vibrations a second.

While the human voice is limited in its production of sound, - rarely falling below 80 vibrations a second and rarely exceeding 1000 vibrations a second, - the ear is by no means limited to that range in hearing. The chirrup of a sparrow, the shrill sound of a cricket, and the piercing shrieks of a locomotive are due to far greater frequencies, the number of vibrations at times equaling 38,000 per second or more.

FIG. - A siren.